Abstract

Factors concerning NO2 uptake by the absorbent triethanolamine (TEA) in NO2 diffusion tubes are examined. Although the nominal freezing point of TEA is 17.9-21.2 degrees C, we show that, for a range of aqueous TEA solutions (0-20%, H2O), no freezing occurs even at -10 degrees C. Therefore NO2 collection efficiency is unlikely to be impaired by low temperature exposure. The recovery of TEA from the meshes of exposed samplers is determined as approximately 98%, even after 42 days, showing that the stability in situ of TEA is unaffected by long-term exposure. A model of a diffusion tube sampling array for simultaneous exposures, with a 0.1 m sampler spacing, shows that NO2 uptake by individual samplers is not affected by the presence of neighbouring tubes in the array. This is confirmed by sampler precision at two Cambridge sites. Four sampler preparation methods are compared for differences in NO2 uptake of exposed samplers. All methods employ TEA as absorbent, transferred by either dipping meshes in a TEA-acetone solution or pipetting aliquots of a TEA-H2O solution onto the meshes. For samplers prepared by three of the methods, no difference in NO2 uptake is found, but for samplers prepared using a 50% v/v TEA-H2O solution, a mean reduction of 18% is found. Student's t-tests show that the difference is highly significant (P < or = 0.001). Reasons for the difference are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.