Abstract
Movement screenings are commonly used to detect unfavorable movement patterns. Markerless motion capture systems have been developed to track 3-dimensional motion. To determine the reliability of movement screenings assessed using a markerless motion capture system when comparing the results of multiple systems and multiple collection periods. Descriptive laboratory study. The inter- and intrarater reliability of a commercially available markerless motion capture system were investigated in 21 recreationally active participants aged between 18 and 22 years. A total of 39 kinematic variables arising from 10 fundamental upper and lower body movements typical of a screening procedure in sports performance were considered. The data were statistically analyzed in terms of relative error via the intraclass correlation coefficient (ICC) and absolute error via the residual standard error (RSE). Both inter- and intrarater reliability ICCs were at least moderate across all variables (ICC, >0.50), with most movements and corresponding variables having excellent reliability (ICC, >0.90). Although maximum knee valgus angles were the kinematic variables with the lowest interrater reliability (ICCs, 0.59-0.82) and moderate relative agreement, there was agreement in absolute terms with an RSE of <1.3°. Findings indicated that markerless motion capture provides reliable measurements of joint position during a movement screen, which allows for a more objective evaluation of the direction and subsequent success of interventions. However, practitioners should consider relative and absolute agreements when applying information provided by these systems. Markerless motion capture systems may assist clinicians by reliably assessing movement screenings using different systems over different collection periods.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.