Abstract

The reliability of high radiance InGaAsP/InP DH LED's operating in the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1.2-1.3 \mu</tex> m wavelength and the defect structures observed in this quaternary alloy have been presented. Threading dislocations and misfit dislocations do not act as strong nonradiative recombination centers, in contrast with the case in GaAs or GaAlAs optical devices. Dark-spot defects (DSD's) were sometimes generated in the emitting area during aging at elevated temperatures. These defects were analyzed microscopically using a transmission electron microscope and were identified as precipitates. To investigate the homogeneous degradation, accelerated aging at the ambient temperatures of 20, 60, 120, 170, 200, and 230°C has been carried out for over 15 000 h at the current density of 8 kA/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> using LED's without dark structures. The degradation rates were statistically calculated by assuming the normal distribution. The mean values of degradation rates and the values of standard deviation were determined at the temperatures above 170°C. The activation energy of homogeneous degradation was determined to be 1.0 eV and the extrapolated half-life in excess of 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sup> h was estimated at the ambient temperature of 60°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.