Abstract

PurposeMeasurement of glenoid bone loss in the shoulder instability can be assessed by CT or MRI multiplanar imaging and is crucial for pre-operative planning. The aim of this study is to determine the intra and interobserver reliability of glenoid deficiency measurement using MRI multiplanar reconstruction with 2D assessment in the sagittal plane (MPR MRI).MethodsWe reviewed MRI images of 80 patients with anterior shoulder instability with Osirix software using MPR. Six observers with basic experience measured the glenoid, erosion edge length, and bone loss twice, with at least one-week interval between measurements. We calculated reliability and repeatability using the intra-class correlation coefficient (ICC) and minimal detectable change with 95% confidence (MDC95%).ResultsIntra and Inter-observer ICC and MDC95% for glenoid width and height were excellent (ICC 0,89-0,96). For erosion edge length and area of the glenoid were acceptable/good (ICC 0,61-0,89). Bone loss and Pico Index were associated with acceptable/good ICC (0,63 -0,86)) but poor MDC95% (45 - 84 %). Intra-observer reliability improved with time, while inter-observer remained unchanged.ConclusionThe MPR MRI measurement of the anterior glenoid lesion is very good tool for linear parameters. This method is not valid for Pico index measurement, as the area of bone loss is variable. The pace of learning is individual, therefore complex calculations based on MPR MRI are not resistant to low experience as opposed to true 3D CT

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.