Abstract

Failure modes and mechanisms of AlGaN/GaN high-electron-mobility transistors are reviewed. Data from three de-accelerated tests are presented, which demonstrate a close correlation between failure modes and bias point. Maximum degradation was found in semi-on conditions, close to the maximum of hot-electron generation which was detected with the aid of electroluminescence (EL) measurements. This suggests a contribution of hot-electron effects to device degradation, at least at moderate drain bias (VDS 30-50 V), new failure mechanisms are triggered, which induce an increase of gate leakage current. The latter is possibly related with the inverse piezoelectric effect leading to defect generation due to strain relaxation, and/or to localized permanent breakdown of the AlGaN barrier layer. Results are compared with literature data throughout the text.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.