Abstract

Sinkhole collapse is one of the main limitations on the development of karst areas, especially where bedrock is covered by unconsolidated material. Studies of sinkhole formation have shown that sinkholes are likely to develop in cutter (enlarged joint) zones as a result of subterranean erosion by flowing groundwater. Because of the irregular distribution of pinnacles and cutters on the bedrock surface, uncertainties arise when "hit-or-miss" borehole drilling is used to locate potential collapse sites. A high-resolution geophysical technique capable of depicting the details of the bedrock surface is essential for guiding the drilling program. Dipole-dipole electrical resistivity tomography (ERT) was used to map the bedrock surface at a site in southern Indiana where limestone is covered by about 9 m of clayey soils. Forty-nine transects were conducted over an area of approximately 42,037 m2. The electrode spacing was 3 m. The length of the transects varied from 81 to 249 m. The tomographs were interpreted with the aid of soil borings. The repeatability of ERT was evaluated by comparing the rock surface elevations interpreted from pairs of transects where they crossed each other. The average difference was 2.4 m, with a maximum of 10 m. The discrepancy between interpreted bedrock-surface elevations for a transect intersection may be caused by variations in the subsurface geology normal to the transect. Averaging the elevation data interpreted from different transects improved the ERT results. A bedrock surface map was generated using only the averaged elevation data at the transect junctions. The accuracy of the map was further evaluated using data from four exploratory boreholes. The average difference between interpreted and actual bedrock surface-elevations was less than 0.4 m. The map shows two large troughs in the limestone surface: one coinciding with an existing sinkhole basin, while the other is in alignment with a small topographic valley. Because sinkholes were observed at the same elevation interval in similar valleys in the vicinity, the delineated trough may have implications for future land use at the site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.