Abstract

ObjectivesEvidence on the reliability of digital techniques for wear volume assessment using three-dimensional (3D) scan datasets is scarce. This study evaluated the reliability of a repeated-scan superimposition technique and two single-scan techniques in assessing wear volume loss on flat surfaces of 3D-printed resin specimens. MethodsCuboid-shaped (15×10×10 mm) resin specimens were 3D-printed (n = 14) and scanned before and after 200,000 cycles of masticatory simulation. For the repeated-scan superimposition technique, digital 3D models of specimens before and after masticatory simulation were superimposed, and the volume loss was determined. The first single-scan technique utilized a computer-aided design freeware program, while the second one employed a 3D-metrology software program. In the freeware program, the worn area of 3D objects was edited directly to obtain a flat surface. In the 3D-metrology software program, the worn area was deleted first and then filled to the flat surface. The volume differences before and after editing were calculated in each software program. Agreement between the three measurement techniques was determined through intraclass correlation coefficients (ICCs). One-way analysis of variance was performed to compare the wear volume loss assessed by the three techniques (α = 0.05). ResultsHigh inter-technique reliability was observed between the three assessment techniques (ICC = 0.998, p < .001). On pair-wise comparisons of two of the three techniques, all pairs showed high consistency (ICC ≥ 0.999, p < .001). No significant difference was found in the wear volume loss assessed using the three techniques (p = .996). ConclusionsDigital repeated-scan superimposition and two single-scan techniques demonstrated high reliability in assessing wear volume loss on flat surfaces. Clinical significanceThe repeated-scan superimposition technique can be effectively utilized to assess wear volume loss of anatomically shaped specimens and flat surfaces. This study indicates that the single-scan techniques may serve as a suitable alternative to the repeated-scan superimposition technique when evaluating wear volume loss of flat surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call