Abstract

In an attempt to develop a thermally stable solder system, an in-situ Pb-Sn solder composite reinforced with Cu6Sn5 dispersoids was investigated for its thermal stability. The stability was evaluated mainly by measuring the growth rate of intermetallics at in-situ composite solder/BLM interface as a function of the number of reflow soldering cycles and aging time. The rates were compared with those of the eutectic Pb-Sn and Sn-Ag solders. After the thermal treatments, the solder joints were tested for their shear strengths. The results indicated that the in-situ composite solder has a higher shear strength and better thermal stability than the eutectic Pb-Sn solder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.