Abstract

Background:Testing of B-Raf proto-oncogene (BRAF) mutation in tumor is necessary before targeted therapies are given. When tumor samples are not available, plasma samples are commonly used for the testing of BRAF mutation. The aim of this study was to investigate the diagnostic accuracy of BRAF mutation testing using plasma sample of cancer patients.Methods:Databases of Pubmed, Embase, and Cochrane Library were searched for eligible studies investigating BRAF mutation in paired tissue and plasma samples of cancer patients. A total of 798 publications were identified after database searching. After removing 229 duplicated publications, 569 studies were screened using the following exclusion criteria: (1) BRAF mutation not measured in plasma or in tumor sample; (2) lacking BRAF-wildtype or BRAF-mutated samples; (3) tissue and plasma samples not paired; (4) lacking tumor or plasma samples; (5) not plasma sample; (6) not cancer; (7) un-interpretable data. Accuracy data and relevant information were extracted from each eligible study by 2 independent researchers and analyzed using statistical software.Results:After pooling the accuracy data from 3943 patients of the 53 eligible studies, the pooled sensitivity, specificity, and diagnostic odds ratio of BRAF mutation testing using plasma sample were 69%, 98%, and 55.78, respectively. Area under curve of summary receiver operating characteristic curve was 0.9435. Subgroup analysis indicated that BRAF mutation testing using plasma had overall higher accuracy (diagnostic odds ratio of 89.17) in colorectal cancer, compared to melanoma and thyroid carcinoma. In addition, next-generation sequencing had an overall higher accuracy in detecting BRAF mutation using plasma sample (diagnostic odds ratio of 63.90), compared to digital polymerase chain reaction (PCR) and conventional PCR, while digital PCR showed the highest sensitivity (74%) among the 3 techniques.Conclusion:BRAF testing using plasma sample showed an overall high accuracy compared to paired tumor tissue sample, which could be used for cancer genotyping when tissue sample is not available. Large prospective studies are needed to further investigate the accuracy of BRAF mutation testing in plasma sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call