Abstract

A current lead for a cryocooled superconducting magnet (CSM) was designed and fabricated using a high-temperature superconductor (HTS) tape, which could easily facilitate modification of the transport current capacity. The current lead was constructed of two terminal blocks, a support tube, and five Bi2223/AgAu HTS tapes. The Bi2223/AgAu HTS tapes with a critical current of 100 A at 77 K in self-fields were used for the current leads. The critical current value of the current lead was 390 A at 77 K in self-fields. The initial critical current at 77 K was maintained after four thermal cycles. The transport current of 170 A was continuously applied at 75 K, 0.27 T by conduction cooling. The voltage between two terminal blocks was 0.28 mV, even after 930 cycles of electromagnetic force (Lorentz force). The heat leakage through the current lead was 0.21 W from 55 K stage to 4.5 K stage. The experimental results showed that the current lead for CSM had sufficient strength against thermal stress and Lorentz force. The current lead has been operated in a CSM to demonstrate a stable excitation and reliability after thermal cycles from room temperature to 4 K. During the excitation and thermal cycle test, overall voltage of the current lead was maintained at an operational condition of 155 A, 55 K, and 0.26 T.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call