Abstract

The degradation produced by high current density stressing of a contact to p-SiC consisting of an Al-bearing ohmic contact, a TiW diffusion barrier, and a thick Au overlayer was studied. The test structure allowed for vertical current stressing and the measurement of the specific contact resistance before and after stressing. A threshold current for contact failure was established for the Ti/Al and W/Al contacts, at which a large increase in specific contact resistance was measured and extensive voiding occurred in the ohmic contact region. The high current stressing generated a flux of Al from the ohmic contact layer, through the TiW barrier, to the surface to be oxidized, along with a flux of Au into the ohmic contact layer. The voiding in the ohmic contact layer, caused by the unequal fluxes of Al and Au, decreased the active area of the contact, consequently increasing the current density and the associated effects from electromigration and Joule heating, initiating a runaway event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.