Abstract
The reliability of adhesive interconnections using anisotropic conductive film (ACF) and non-conductive film (NCF) was evaluated by measuring connection resistance during 500 cycles of thermal shock testing. The four-point probe method was used to measure the connection resistance of the adhesive joints constructed with Au bump on Si chip and Cu pad on flexible printed circuit (FPC). The connection resistance of the ACF joints was markedly higher than that of the NCF joints, mainly due to the constriction of the current flow and the intrinsic resistance of the conductive particles in the ACF joints. The connection resistances of both interconnections decreased with increasing bonding force, and subsequently converged to about 10 and 1 mΩ at a bonding force of 70 and 80 N, for the ACF and NCF joints, respectively. During the thermal shock testing, two different conduction behaviors were observed: increased connection resistance and the termination of Ohmic behavior. The former was due to the decreased contact area caused by z-directional swelling of the adhesives, whereas the latter was caused by either contact opening in the adhesive joints or interface cracking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.