Abstract

BackgroundFew, if any, patient reported symptoms have been shown to be related to objective measures of spine function. Recently, patient-reported measures of disability following spinal manipulative therapy have been associated with an immediate decrease in spinal stiffness obtained by instrumented L3 indentation. Given this novel relation, we anticipate that stiffness measures obtained from locations in addition to L3 may yield valuable information. As such, our research team has developed a new technique to acquire stiffness data continuously over an entire spinal region. The reliability of stiffness measurements obtained by this new technique has yet to be quantified.MethodsContinuous stiffness testing employs a weighted roller that moves uninterrupted over the spine while measuring the resulting spinal deflection along a subject-specific, laser-defined trajectory. A volunteer sample of asymptomatic participants were assessed in 2 sessions occurring 1 to 4 days apart, with each session scheduled at the same time of day. Each session consisted of 3 trials each beginning at a baseline of ~ 17 N then progressing to a maximally tolerable load as defined from pre-test familiarization trials (~ 61, 72 or 83 N). Reliability was evaluated with the intraclass correlation coefficient, the standard error of measurement and Bland & Altman analysis.ResultsA total of 17 asymptomatic participants (mean age 29.2 +/− 6 years, 53% female) took part in the study. Overall, the within and between-session reliability of lumbar spine stiffness measures at the maximal tolerable load was excellent ranging from 0.95–1.00 and good to excellent ranging from 0.82–0.93, respectively. Trial averaging was found to reduce standard error of measurement by a mean of 35.2% over all measurement conditions compared to a single trial. Bland and Altman plots for agreement in lumbar spine stiffness measurements varied from − 0.3 +/− 1.2 at unloaded condition to − 0.2 +/− 1.2 at loaded condition. Data from two participants were removed due to the development of back pain between two sessions.ConclusionThis study introduced a new technique for measuring spinal stiffness over an entire spinal region in asymptomatic human participants. The new technique produced reliable measurements quantifying the load-displacement values for within-session and between-session assessments.

Highlights

  • Few, if any, patient reported symptoms have been shown to be related to objective measures of spine function

  • We have shown previously that patient-reported measures of disability following spinal manipulative therapy (SMT) are associated with an immediate decrease in spinal stiffness obtained by instrumented L3 indentation (R = 0.3) [9, 10]

  • As this study was inclusive of asymptomatic participants only, data from two participants were removed from session 2 due to the development of back pain between the first and second sessions

Read more

Summary

Introduction

If any, patient reported symptoms have been shown to be related to objective measures of spine function. Patient-reported measures of disability following spinal manipulative therapy have been associated with an immediate decrease in spinal stiffness obtained by instrumented L3 indentation. Given this novel relation, we anticipate that stiffness measures obtained from locations in addition to L3 may yield valuable information. Previous studies showed that there is a relation between pain and spinal stiffness [2] With this in mind, spinal stiffness assessment has become a common practice in clinical settings in the management of patients with spine-related pain [2, 3]. Prior studies have shown that clinical judgment of PA testing is highly variable in terms of the magnitude [6], direction [7] and the speed of applied load [2] as well as the discrimination threshold for stiffness perception [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.