Abstract
BackgroundArtificial intelligence (AI) has become a popular tool for clinical and research use in the medical field. The aim of this study was to evaluate the accuracy and reliability of a generative AI tool on pediatric familial Mediterranean fever (FMF).MethodsFifteen questions repeated thrice on pediatric FMF were prompted to the popular generative AI tool Microsoft Copilot with Chat-GPT 4.0. Nine pediatric rheumatology experts rated response accuracy with a blinded mechanism using a Likert-like scale with values from 1 to 5.ResultsMedian values for overall responses at the initial assessment ranged from 2.00 to 5.00. During the second assessment, median values spanned from 2.00 to 4.00, while for the third assessment, they ranged from 3.00 to 4.00. Intra-rater variability showed poor to moderate agreement (intraclass correlation coefficient range: -0.151 to 0.534). A diminishing level of agreement among experts over time was documented, as highlighted by Krippendorff’s alpha coefficient values, ranging from 0.136 (at the first response) to 0.132 (at the second response) to 0.089 (at the third response). Lastly, experts displayed varying levels of trust in AI pre- and post-survey.ConclusionsAI has promising implications in pediatric rheumatology, including early diagnosis and management optimization, but challenges persist due to uncertain information reliability and the lack of expert validation. Our survey revealed considerable inaccuracies and incompleteness in AI-generated responses regarding FMF, with poor intra- and extra-rater reliability. Human validation remains crucial in managing AI-generated medical information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.