Abstract

PurposeThe purpose of this paper is to provide the maintenance personnel with a methodology for modeling and estimating the reliability of critical machine systems using the historical data of their inter‐failure times.Design/methodology/approachThe failure patterns of five different machine systems were modeled with NHPP‐log linear process and HPP belonging to stochastic point process for predicting their reliability in future time frames. Besides the classical approach, Bayesian approach was also used involving Jeffreys's invariant non‐informative independent priors to derive the posterior densities of the model parameters of NHPP‐LLP and HPP with a view to estimating the reliability of the machine systems in future time intervals.FindingsFor at least three machine systems, Bayesian approach gave lower reliability estimates and a larger number of (expected) failures than those obtained by the classical approach. Again, Bayesian estimates of the probability that “ROCOF (rate of occurrence of failures) would exceed its upper threshold limit” in future time frames were uniformly higher for these machine systems than those obtained with the classical approach.Practical implicationsThis study indicated that, the Bayesian approach would give more realistic estimates of reliability (in future time frames) of the machine systems, which had dependent inter‐failure times. Such information would be helpful to the maintenance team for deciding on appropriate maintenance strategy.Originality/valueWith the help of Bayesian approach, the posterior densities of the model parameters were found analytically by considering Jeffreys's invariant non‐informative independent prior. The case study would serve to motivate the maintenance teams to model the failure patterns of the repairable systems making use of the historical data on inter‐failure times and estimating their reliability in future time frames.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.