Abstract
Microgrids are constituted of interconnected loads and dispersed energy resources. They increase the reliability of the power supply, decrease the cost of the per unit energy and support the green environment concept. Microgrids have gained importance due to their ability to deliver reliable energy and operate in both grid-connected and off-grid/island modes. Renewable energy sources such as photovoltaic (PV) and wind can be connected to the microgrid system to generate green energy. An electric vehicle charging station (EVCS) can be deployed in microgrids powered by renewable energy sources. An effective way to handle the rapidly rising load demand of electric vehicles (EVs) is to integrate EV recharge stations into microgrids. Due to the intermittent nature of solar PV and EV load's reliability, an evaluation of microgrids becomes challenging. Assessment of the components’ failure and their impact on the system reliability is proposed using different methods. Reliability Block Diagram (RBD), Markov Reliability Modeling (MRM) and Fault Tree Analysis (FTA) - Monte Carlo simulation are used for the Reliability Modeling of a community microgrid considering EVCS as a critical load. The mean time to failure (MTTF) is computed for the entire microgrid which includes PV, wind and fuel cell systems integrated into the grid with associated power electronic devices, transmission lines, transformers and point of common coupling (PCC). MATLAB software was used to program and study the reliability aspects of the microgrid. Using the FTA MCS technique and grid functions for 45 years with 20 % reliability, significant results were obtained in terms of a MTTF rate of 26.16 years.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: e-Prime - Advances in Electrical Engineering, Electronics and Energy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.