Abstract

AbstractDesign for remanufacturing (DfRem) is one attractive strategy that encourages the reuse of a product and extends the product's life cycle. Traditional design processes often only consider product reliability at an early design stage. However, from the perspective of environmental sustainability, it is becoming increasingly important to evaluate the long-term economic and environmental impacts of design decisions during early-stage design. We propose a bi-level DfRem framework consisting of system-level reusability allocation and component-level design tradeoff analysis, considering reliability and product warranty policy. First, a system-level reusability allocation problem aims at a theoretical exploration of the design space where all the components comprising the system are allocated certain reuse rates to achieve target energy savings with minimum cost. Following the theoretical exploration at the system level, a component-level analysis looks at practical design options for each component and trades-off between the overall cost and energy consumption for multiple remanufacturing cycles. Both levels of the framework require modeling component reuse for multiple remanufacturing cycles, which we achieve by using a branched power-law model that provides probabilistic scenarios of reusing the component or replacing it with a new part. We demonstrate the utility of this framework with the case study of an infinitely variable transmission (IVT) used by some agricultural machines manufactured by John Deere and show snapshots of a prototype software tool that we developed for easy use by designers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call