Abstract
Abstract. Iris code matching is an important stage of iris biometric systems which compares the input iris code with stored patterns of enrolled iris codes and classifies the code into one of classes so that, the claim is accepted or rejected. Several classifier based approaches are proposed by the researchers to improve the recognition accuracy. In this paper, we discuss the factors affecting an iris classifier’s performance and we propose a reliability index for iris matching techniques to quantitatively measure the extent of system reliability, based on false acceptance rate and false rejection rates using Monte Carlo Simulation. Experiments are carried out on benchmark databases such as, IITD, MMU v-2, CASIA v-4 Distance and UBIRIS v.2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.