Abstract
Nanoelectronic systems are extremely likely to demonstrate high defect and fault rates. As a result, defect and/or fault tolerance may be necessary at several levels throughout the system. Methods for improving defect tolerance, in order to prevent faults, at the component level for quantum-dot cellular automata (QCA)1 have been studied. However, methods and results considering fault tolerance in QCA have received less attention. In this paper, we present an analysis of how QCA system reliability may be impacted by using various N-modular redundancy (NMR) schemes. Our results demonstrate that using NMR in QCA can improve reliability in some cases, but can harm reliability in others.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.