Abstract

Summary Source location determination of volcanic tremor has been a challenge in seismology due to the waveform complexity and difficulties in reading P- and S-wave arrival times. We present a method for locating volcanic tremor recorded at a seismic network distributed around a volcano. The method combines the source-scanning algorithm and cross-correlation analysis. Tremor records are processed using a technique adopted from ambient seismic interferometry to obtain stacked cross-correlation functions (CCFs) for all station pairs, which are expected to show high amplitudes at the lag time that corresponds to the travel time difference between the stations. The best seismic source location is determined from the maximum of the sum of envelope amplitudes of CCFs at predicted travel time differences between all pairs of stations. This method does not compute theoretical amplitudes, assume an initial hypocenter location, or measure the arrival times. To quantitatively evaluate the accuracy of the location determination, we examine the method by using the vertical component seismic data of volcano-tectonic (VT) earthquakes recorded at six seismic stations at Izu-Oshima volcano. The VTs have been previously located by using arrival times of P- and S-waves, and the hypocenters are used as the reference for evaluation and error estimation of the method. The results show that the misfit, which is the distance between our estimated sources and the references, is about 2 km or less when using CCFs at the frequency band of 4–16 Hz which contains the dominant frequencies of direct S-waves. To test whether the method can be used for volcanic tremor, we simulate the tremors by combining the observed VTs that occurred randomly in time in a localized region. The simulated tremors are determined with location errors of approximately 1 km or less, when the sources of VTs are located within a distance of 1 km and CCFs are calculated for a minimum data length of about 2 minutes. The volcanic tremor location method we present here can be used as an alternative tool for volcano monitoring, especially to locate tremors and seismic events with no clear phase arrival.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.