Abstract
The solder joint reliability of quad flat non-lead (QFN) package,which has become very popular over the past few years,has received intense interest.The finite element method (FEM) is essential to evaluate the reliability of QFN device.In this paper,Garofalo-Arrheninus model was implemented to simulate the deformation of QFN soldered joints.Equivalent creep strain of the soldered joints was calculated by means of finite element analyses,and was used to evaluate the reliability of QFN packages.It is found that the critical soldered joint of QFN is located the package corner while the maximum creep strain is obtained at the top interface of peripheral soldered joint.The creep strain is provided with periodicity and additivity as the thermal cycling.Nonlinear analysis of QFN package with different lead counts was presented as well,in which the phenomenon that the value of induced creep strain arise as the package size decreasing is noted.Moreover,SnPb and two lead-free solders,namely,Sn3.5Ag/Sn3.8Ag0.7Cu,were both taken into consideration.Simulated results indicate that the creep strain value of lead-free soldered joints is lower than that of SnPb soldered joints,which can be attributed to the difference of stiffness and coefficient of thermal expansion among three solders.Garofalo-Arrheninus model is used to calculate the creep strain of the QFN device for the first time in this study.The results provide an important basis for evaluating the reliability of QFN package.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.