Abstract

Reliability evaluation of interconnection network is important to the design and maintenance of multiprocessor systems. The extra connectivity and the extra edge-connectivity are two important parameters for the reliability evaluation of interconnection networks. The <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {n}}$</tex> </formula> -dimensional bijective connection network (in brief, BC network) includes several well known network models, such as, hypercubes, Möbius cubes, crossed cubes, and twisted cubes. In this paper, we explore the extra connectivity and the extra edge-connectivity of BC networks, and discuss the structure of BC networks with many faults. We obtain a sharp lower bound of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${{g}}$</tex> </formula> -extra edge-connectivity of an <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {n}}$</tex> </formula> -dimensional BC network for <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${{n}} \geq 4$</tex> </formula> and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$1 \leq { {g}} \leq {2^{[{{{n}} \over 2}]}}$</tex> </formula> . We also obtain a sharp lower bound of <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${ {g}}$</tex> </formula> -extra connectivity of an <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${{n}}$</tex> </formula> -dimensional BC network for <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${{n}} \geq 4$</tex> </formula> and <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$1 \leq { {g}} \leq 2{ {n}}$</tex> </formula> which improves the result in [“Reliability evaluation of BC networks,” IEEE Trans. Computers, DOI: 10.1109/tc.2012.106.] for <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">$1 \leq { {g}} \leq { {n}} - 3$</tex> </formula> . Furthermore, we give a remark about exploring the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${ {g}}$</tex> </formula> -extra edge-connectivity of BC networks for the more general <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {g}}$</tex> </formula> , and we also characterize the structure of BC networks with many faulty nodes or links. As an application, we obtain several results on the <formula formulatype="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex Notation="TeX">${\mbi {g}}$</tex> </formula> -extra (edge-) connectivity and the structure of faulty networks on hypercubes, Möbius cubes, crossed cubes, and twisted cubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.