Abstract

Traditional reliability analysis methods such as Reliability Block Diagram, Fault Tree Analysis, and Markov Analysis are all subjective methods whose results significantly depend on the analysts’ skills and experiences. A model-based reliability method is proposed for the wheel brake system by using the architectural analysis and design language (AADL). The wheel brake system is modeled based on the AADL, and the AADL Error Model Annex is applied to describe the fault propagation of the system. An information extraction approach is proposed for the AADL-based model, and rules for transforming AADL-based models to colored Petri nets are given according to the information extracted. The reliability analysis of the wheel brake system is conducted in terms of the Colored Petri Nets. Through Monte Carlo simulation and linear regression, it is inferred that the lifetime of the wheel brake system follows a Weibull distribution with shape parameter 1.303 and scale parameter 9.992 × 103, and the accuracy of the method has been verified. In this study, the reliability analysis results are generated via the system model automatically; they do not depend on the analysts’ experiences and skills, and ambiguity among different analysts can be avoided.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call