Abstract
The improved efficiency of mineral oil may offer simplicity in facility design compared to traditional air cooling and provide a means for cost savings. Despite its improved cooling efficiency and cost savings, a mineral oil immersion cooling technique is still not widely implemented and original equipment manufacturers are reluctant to jeopardize sales of existing air-based cooling system equipment. Only compelling physics regarding thermal performance of direct immersion cooling is not enough for data center operators. Many uncertainties and concerns persist regarding the effects of mineral oil immersion cooling on the reliability of information technology (IT) equipment both at the component and chassis level. This paper is a first attempt at addressing this challenge by reviewing the changes in physical and chemical properties of IT equipment materials like polyvinyl chloride (PVC), printed circuit board (PCB), and capacitors and characterizes the interconnect reliability of materials. The changes in properties of a mineral oil like kinematic viscosity and dielectric strength are also cited as important factors and discussed briefly. The changes in mechanical properties like elasticity, hardness, swelling, and creep are being shown in the paper for thermoplastic materials. The chemical reaction between material and mineral oil as a function of time and temperature is also conferred. The literature gathered on the subject and quantifiable data gathered by the authors provide the primary basis for this research document.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.