Abstract
A reliability-based structural control design approach is presented that optimizes a control system explicitly to minimize the probability of structural failure. Failure is interpreted as the system’s state trajectory exiting a safe region within a given time duration. This safe region is bounded by hyperplanes in the system state space, each of them corresponding to an important response quantity. An efficient approximation is discussed for the analytical evaluation of this probability, and for its optimization through feedback control. This analytical approximation facilitates theoretical discussions regarding the characteristics of reliability-optimal controllers. Versions of the controller design are described for the case using a nominal model of the system, as well as for the case with uncertain model parameters. For the latter case, knowledge about the relative plausibility of the different possible values of the uncertain parameters is quantified through the use of probability distributions on the uncertain parameter space. The influence of the excitation time duration on feedback control design is discussed and a probabilistic treatment of this time duration is suggested. The relationship to H2 (i.e., minimum variance) controller synthesis is also examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.