Abstract

Recently developed steel self-centering moment-resisting frames (SC-MRFs) have been analytically and experimentally validated as having the potential to eliminate structural damage under a design basis earthquake and restore their original vertical position following a major earthquake. Using Monte Carlo simulation, we subjected three nonlinear models of prototype SC-MRFs to thousands of synthetic ground motions, and recorded peak demand responses such as story drift and beam-column relative rotation. We used this data to examine the sensitivity of SC-MRF behavior to structural properties and geometry, seeking to generate recommendations to improve the existing design procedure. A reliability-based methodology was used to assess the likelihood of reaching the limit state of post-tensioned strand yielding. This study proposes modifications to the existing design procedure and illustrates a reliability-based methodology for developing improved seismic design recommendations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.