Abstract
Abstract For reliability-based design optimization (RBDO), generating an input statistical model with confidence level has been recently proposed to offset inaccurate estimation of the input statistical model with Gaussian distributions. For this, the confidence intervals for the mean and standard deviation are calculated using Gaussian distributions of the input random variables. However, if the input random variables are non-Gaussian, use of Gaussian distributions of the input variables will provide inaccurate confidence intervals, and thus yield an undesirable confidence level of the reliability-based optimum design meeting the target reliability βt. In this paper, an RBDO method using a bootstrap method, which accurately calculates the confidence intervals for the input parameters for non-Gaussian distributions, is proposed to obtain a desirable confidence level of the output performance for non-Gaussian distributions. The proposed method is examined by testing a numerical example and M1A1 Abrams tank roadarm problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.