Abstract

A probabilistic sufficiency factor approach is proposed that combines safety factor and probability of failure. The probabilistic sufficiency factor approach represents a factor of safety relative to a target probability of failure. It provides a measure of safety that can be used more readily than the probability of failure or the safety index by designers to estimate the required weight increase to reach a target safety level. The probabilistic sufficiency factor can be calculated from the results of Monte Carlo simulation with little extra computation. The paper presents the use of probabilistic sufficiency factor with a design response surface approximation, which fits it as a function of design variables. It is shown that the design response surface approximation for the probabilistic sufficiency factor is more accurate than that for the probability of failure or for the safety index. Unlike the probability of failure or the safety index, the probabilistic sufficiency factor does not suffer from accuracy problems in regions of low probability of failure when calculated by Monte Carlo simulation. The use of the probabilistic sufficiency factor accelerates the convergence of reliability-based design optimization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call