Abstract
This paper presents a numerical investigation of the probabilistic approach in estimating the reliability of wire bonding, and develops a reliability-based design optimization Methodology (RBDO) for microelectronic device structures. The objective of the RBDO method is to design structures which should be both economical and reliable where the solution reduces the structural weight in uncritical regions. It does not only provide an improved design, but also a higher level of confidence in the design. The Finite element simulation model intends to analyze the sequence of the failure events in power microelectronic devices. This numerical model is used to estimate the probability of failure of power module regarding the wire bonding connection. However, due to time-consuming of the multiphysics finite element simulation, a response surface method is used to approximate the response output of the limit state, in this way the reliability analysis is performed directly to the response surface by using the First and the Second Order Reliability Methods FORM/SORM. Subsequently the reliability analysis is integrated in the optimization process to improve the performance and reliability of structural design of wire bonding. The sequential RBDO algorithm is used to solve this problem and to find the best structural designs which realize the best compromise between cost and safety.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.