Abstract
Abstract In recent years, cutting tool manufacturers are moving toward improving the robustness of the positioning of an insert in the tool body interface. Increasing the robustness of the interface involves designs with both chamfered and serrated surfaces. These designs have a tendency to overdetermine the positioning and cause instabilities in the interface. Cutting forces generated from the machining process will also plastically deform the interface, consequently, altering the positioning of the insert. Current methodologies within positioning and variation simulation use point-based contacts and assume linear material behavior. In this paper, a first-order reliability-based design optimization framework that allows robust positioning of surface-to-surface-based contacts is presented. Results show that the contact variation over the interface can be limited to predefined contact zones, consequently allowing successful positioning of inserts in early design phases of cutting tool designs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.