Abstract

AbstractDue to the inherent flexibility of tensile membrane structures (TMS), they need to remain in a stable equilibrium condition in the presence of gusty winds as well as in their absence. This paper is aimed at the reliability-based optimization of frame-supported tensile membrane structures subjected to uncertain wind loads. The transient membrane displacement is minimized under this random loading constrained to a stable TMS form and a maximum failure probability against membrane tearing. A particle swarm optimization algorithm is used, combined with Latin hypercube sampling and response surface approach, for obtaining the optimum initial prestress required. These algorithms balance the computationally demanding dynamic relaxation method required for the membrane structural analysis. The proposed methodology is demonstrated through the example of a frame-supported conic membrane structure. The results show that the proposed method can effectively optimize the TMS performance under random wind forces...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call