Abstract

Efficient code-search maximum-likelihood decoding algorithms, based on reliability information, are presented for binary Linear block codes. The codewords examined are obtained via encoding. The information set utilized for encoding comprises the positions of those columns of a generator matrix G of the code which, for a given received sequence, constitute the most reliable basis for the column space of G. Substantially reduced computational complexity of decoding is achieved by exploiting the ordering of the positions within this information set. The search procedures do not require memory; the codeword to be examined is constructed from the previously examined codeword according to a fixed rule. Consequently, the search algorithms are applicable to codes of relatively large size. They are also conveniently modifiable to achieve efficient nearly optimum decoding of particularly large codes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.