Abstract
Link failure is still a severe problem in today's networking system. Transmission delays and data packet loss cause link failure in the network. Rapid connection recovery after a link breakdown is an important topic in networking. The failure of the networking link must be recovered whenever possible because it could cause blockage of network traffic and obstruct normal network operation. To overcome this difficulty, backup or secondary channels can be chosen adaptively and proactively in SDN based on data traffic dynamics in the network. When a network connection fails, packets must find a different way to their destination. The goal of this research is to find an alternative way. Our proposed methodology uses a machine-learning algorithm called Linear Regression to uncover alternative network paths. To provide for speedy failure recovery, the controller communicates this alternate path to the network switches ahead of time. We train, test, and validate the learning model using a machine learning approach. To simulate our proposed technique and locate the trials, we use the Mini net network simulator. The simulation results show that our suggested approach recovers link failure most effectively compared to existing solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Innovations in Science and Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.