Abstract

In this paper, we focus on preemptive rate monotonic scheduling and comprehensively consider energy consumption and system reliability about scheduling periodic tasks with shared resources. Firstly, a static scheme for fixed priority periodic tasks with shared resources is proposed, which executes with a uniform speed and ignores the system reliability. Secondly, the problem of energy consumption and system reliability for scheduling fixed priority periodic tasks with shared resources is proved to be NP-hard and a maximum execution time first (MF) algorithm is proposed. Finally, a dynamic scheme for fixed priority periodic tasks with shared resources (DA) is proposed. The DA algorithm exploits the dynamic slack time to save energy while preserving the system reliability. The experimental results show that the DA algorithm saves about 19.28% energy compared with the MF algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.