Abstract

In a reliability assessment of hydraulic fracturing, the efficacy of hydraulic fracturing must be evaluated, and the source properties and magnitude of micro-earthquakes induced by hydraulic fracturing in a coal mine need to be quantified. Firstly, the changing trends of the number and energy of micro-seismic events induced by hydraulic fracturing with high-pressure water were examined, and the hydraulic fracturing effect was evaluated by micro-seismic location. Then, the source parameters (seismic moment M0, source radius R, corner frequency f0, radiated seismic energy E, stress drop △σ, and apparent stress σa) were calculated using the Brune model and the grid-search method, and the relationships between M0 and other source parameters were analyzed. Finally, the source parameters between micro-earthquakes induced by hydraulic fracturing and those induced by mining were compared, and the relationship between Mw (moment magnitude) and ML (local magnitude) of a micro-earthquake induced by hydraulic fracturing was ascertained. The results show that most micro-earthquakes occur in the initial stage of water pressure increase during hydraulic fracturing. In addition, the occurrence of several micro-earthquakes does not correspond strictly to the significant decrease of water pressure; the locations of micro-earthquakes can be used to evaluate the effect of hydraulic fracturing. The source parameters of micro-earthquakes induced by hydraulic fracturing in the Xieqiao coal mine can be obtained from the Brune model and the grid-search method. Corner frequency f0 decreases with increase in seismic moment M0, source parameters of R and E, as well as △σ increase with increase in seismic moment M0, but the apparent stress σa fluctuates around a certain value; the relationships between the other source parameters and M0 of micro-earthquake induced by hydraulic fracturing are consistent with that of a micro-earthquake induced by coal mining. Considering Mw, ML1 can be better used to calculate the magnitude of micro-earthquakes induced by hydraulic fracturing. Through Mw and ML1, the magnitude of a micro-earthquake induced by hydraulic fracturing can be evaluated. Our results improve the evaluation of the hydraulic fracturing effect, the understanding of source properties, and evaluation of the magnitude of micro-earthquakes induced by hydraulic fracturing. It is found that these micro-earthquakes are within the safe controllable range, and the hydraulic fracturing process of the Xieqiao coal mine is reliable and safe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call