Abstract

The influence of soil variability on three-dimensional (3D) probabilistic slope stability analysis has been investigated previously for soils that display isotropic spatial variability features or anisotropic horizontal fabric patterns. However, due to various soil deposition processes, weathering, filling or tectonic movements, the assumptions of isotropy or horizontal layering may not always be realistic. This study presents 3D analyses of slopes with spatially variable soils associated with rotated transverse anisotropy features. The results show that for cross-dip slopes where the strike direction of soil strata is perpendicular to the out-of-plane direction of the slope, the reliability depends on various factors including strata rotation angle and autocorrelation distances, and differs significantly from slopes with horizontally deposited soil fabric. The influence of strata orientation is also pronounced for dip slopes and reverse dip slopes, and these are presented in terms of reliability indices of the slopes and statistics of the length of sliding mass and elaborated by considering the failure mechanism under different scenarios. Through these analyses, this paper discusses the key features of slope reliability considering rotated transverse anisotropy in soil properties, and their major differences from situations involving horizontal soil layers or two-dimensional probabilistic assessments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.