Abstract
The pitting corrosion of pipelines subjected to the spatio-temporal earthquake was evaluated to illustrate the failure probability of multiple loading conditions. The pipeline vibration was modeled as a coupled 3D vibration equation considering the uncertain soil parameters. Using a combination of the Gamma process and Gaussian copula function implemented time-dependent corroded growth of single defect as well as the spatial-dependent between corroded depth growths of different defects. All modeling was embedded in a frame of Bayesian inference and Markov chain Monte Carlo (MCMC) simulation techniques to predict the future corroded growth by reported in-line inspections (ILIs). Moreover, the Monte Carlo simulation (MC) technique was used to evaluate the reliability of the pipeline system, including multiple corroded defects. A case study was employed to prove the application of all proposed models. The results indicate that the reliability analysis of pipelines under the earthquake considering pitting corrosion growth is of considerable significance to the accuracy of the evaluation, which can inform operators from process industry to mitigate the risk of pipeline failure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.