Abstract
Bump shear is widely used to characterize interface strength of Cu/low-k structure. In this work, the blanket low-k structure was used to evaluate the reliability and strength of Cu/low-k structure using finite element modeling technique. The objectives of this work are to determine the critical stress parameters for low-k interfaces with different Cu/low-k structures for understanding the failure mechanism and to improve the low-k structure reliability by optimizing the some parameters. In this paper, the comprehensive parametric study was conducted including 3 different low-k structures, different shear ram height, high Pb solder vs. Pb-free solder, different UBM thicknesses, blok layer modulus effect. The simulation findings can be summarized as follows: The shear force decreases with shear ram height. The critical stress decreases with the number of layer of low-k structure. Higher shear force occurs for SnAg solder bump than SnPb one. Reducing UBM thickness can help to improve the low-k structure reliability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.