Abstract

Manufacturers lack an adequatemethod to balance performance, reliability, and affordability. The reliability-asan-independent-variable methodology is the solution proposed by expressing quantitatively the reliability trade space as ranges of a number of hardware sets and a number of hot-fire tests necessary to develop and qualify/certify a liquid rocket engine against a stated reliability requirement. Therefore, reliability-as-an-independent-variable becomes one of the key decision parameters in early tradeoff studies for liquid rocket engines because the reliability trade space directly influences the performance requirements and, as a result, the affordability. The overall solution strategy of reliability-as-an-independent-variable is based on the Bayesian statistical framework using either the planned or actual number of hot-fire tests. The planned hot-fire test results may include test failures to simulate the typical design-fail-fix-test cycles present in liquid rocket engine development programs in order to provide the schedule and cost risk impacts for early tradeoff studies. The reliability-as-an-independent-variable methodology is exemplarily applied to the actual hot-fire test history of the F-1, the space shuttle main engine, and the RS-68 liquid rocket engine, showing adequate agreement between computed results and actual flight engine reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call