Abstract
BackgroundInertial sensors, such as accelerometers, serve as convenient devices to predict the energy expenditures (EEs) during physical activities by a predictive equation. Although the accuracy of estimate EEs especially matter to athletes receive physical training, most EE predictive equations adopted in accelerometers are based on the general population, not athletes. This study included the heart rate reserve (HRR) as a compensatory parameter for physical intensity and derived new equations customized for sedentary, regularly exercising, non-endurance athlete, and endurance athlete adults.MethodsWith indirect calorimetry as the criterion measure (CM), the EEs of participants on a treadmill were measured, and vector magnitudes (VM), as well as HRR, were simultaneously recorded by a waist-worn accelerometer with a heart rate monitor. Participants comprised a sedentary group (SG), an exercise-habit group (EHG), a non-endurance group (NEG), and an endurance group (EG), with 30 adults in each group.ResultsEE predictive equations were revised using linear regression with cross-validation on VM, HRR, and body mass (BM). The modified model demonstrates valid and reliable predictions across four populations (Pearson correlation coefficient, r: 0.922 to 0.932; intraclass correlation coefficient, ICC: 0.919 to 0.930).ConclusionUsing accelerometers with a heart rate monitorcan accurately predict EEs of athletes and non-athletes with an optimized predictive equation integrating the VM, HRR, and BM parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.