Abstract
This study aimed at examining the concurrent validity and reliability of the multi-point method and the two-point method’s variations for estimating the one-repetition maximum (1RM) in the deadlift and squat exercises and to determine the accuracy of which optimal two loads can be used for the two-point method protocol. Thirteen resistance-trained men performed six sessions that consisted of two incremental loading tests (multi-point method: 20–40–60–80–90% and two-point method variations: 40–60%, 40–80%, 40–90%,60–80%, 60–90%) followed by 1RM tests. Both the multi-point method and the two-point method load variations showed reliable results for 1RM estimation (CV < 10%) squat and deadlift exercises. Session-session reliability was found to be low in deadlift (ICC: 0.171–0.335) and squat exercises (ICC: 0.235–0.479) of 40–60% and 60–80% in two-point methods. Deadlift (ICC: 0.815–0.996) and squat (ICC: 0.817–0.988) had high session-to-session reliability in all other methods. Regarding the validity of deadlift exercise, the multipoint method (R2 = 0.864) and two variations of the two-point method (R2 = 0.816 for 40–80%, R2 = 0.732 for 60–80%) showed very large correlations, whereas other two variations of the two-point method (R2 = 0.945 for 40–90%, R2 = 0.914 for 60–90%) showed almost perfect correlations with the actual 1RM. Regarding the validity of squat exercise, the multi-point method (R2 = 0.773) and two variations of the two-point method (R2 = 0.0847 for 60–80%, R2 = 0.705 for 40–90%) showed very large correlations, whereas 40–60% variation showed almost perfect correlation (R2 = 0.962) with the actual 1RM. In conclusion, whereas both the multi-point method and the two-point method load variations showed reliable results, the multiple-point method and most of the two-point methods’ load variations examined in this research provided an accurate (from large-moderate to perfect) estimate of the 1RM. Therefore, we recommend using the multi-point method and especially the two-point methods variations including higher relative loads to estimate 1RM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.