Abstract

BackgroundMuscle strength measurements using hand-held dynamometry (HHD) can be affected by the inadequate strength of the tester and lack of stabilization of the participants and the device. A portable HHD anchoring system was designed that enabled the measurement of isometric knee extensor muscle strength in a supine position. This can be used with individuals who are unable to assume the sitting position required for the measurement of knee extensor strength in conventional isokinetic dynamometry (IKD). The aim of this study was to evaluate the reliability and validity of knee extensor strength measurements using this device.MethodsThe maximal knee extensor isometric strength of the dominant leg in healthy adults aged 20 to 40 years was tested. Three trials of three contractions were assessed by two raters using the portable dynamometer anchoring system whilst the participant was in the supine position. After the three measurement trials, peak knee extensor torque was evaluated using IKD. The intraclass correlation coefficient (ICC) and 95% limits of agreement (LOA) for intra- and inter-rater reliability were obtained.ResultsThirty-nine participants (19 male and 20 female, aged 30.08 ± 4.16 y), completed the three measurement trials. The ICC for intra-rater reliability was 0.98 for the maximum measurements of knee extensor strength (95% confidence interval [CI]: 0.96–0.98) and 0.98 (95% CI: 0.96–0.99) for inter-rater reliability. The mean difference (%) between the maximum knee extensor strength measurements of each trial was 1.02% (LOA range: − 11.13 to 13.16%) for intra-rater and − 1.44% (LOA range: − 13.98 to 11.08%) for inter-rater measurements. The Pearson correlation coefficient of the maximum voluntary peak torque measurements with the portable dynamometer anchoring system and IKD was 0.927.ConclusionsThe portable dynamometer anchoring system is a reliable and valid tool for measuring isometric knee extensor strength in a supine position. Future clinical feasibility studies are needed to determine if this equipment can be applied to people with severe illness or disabilities.Trial registrationKCT0003041.

Highlights

  • Muscle strength measurements using hand-held dynamometry (HHD) can be affected by the inadequate strength of the tester and lack of stabilization of the participants and the device

  • Forty healthy participants (20 males, 20 females) with a mean ± standard deviation (SD) age of 30.1 ± 4.2 y, height of 169.8 ± 7.2 cm, and body mass of 65.4 ± 13.6 kg were enrolled in the study

  • The dynamometer anchoring system developed in this study produced excellent intra- and inter-rater reliability for maximal isometric knee extensor strength measurements

Read more

Summary

Introduction

Muscle strength measurements using hand-held dynamometry (HHD) can be affected by the inadequate strength of the tester and lack of stabilization of the participants and the device. A portable HHD anchoring system was designed that enabled the measurement of isometric knee extensor muscle strength in a supine position. This can be used with individuals who are unable to assume the sitting position required for the measurement of knee extensor strength in conventional isokinetic dynamometry (IKD). Muscle strength can be evaluated using manual muscle testing (MMT), hand-held dynamometry (HHD), and isokinetic dynamometry (IKD) [9]. The application of IKD is impractical in many clinical settings

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.