Abstract

Purpose: The aim of this work was to determine the intersession reliability and validity of a recently developed prototype Isokinetic Knee Dynamometer to assess isokinetic knee extension and flexion peak moments compared to a Biodex System 4 dynamometer. Methods: Thirty- -five healthy participants performed two sessions (48-h separation) of bilateral concentric isokinetic knee extension and flexion on both isokinetic devices at 60 °/s (6 repetitions), 180 °/s (10 repetitions) and 240 °/s (15 repetitions). Dynamometer and limb order were randomized among participants while peak moment of each set was used for data analysis. Results: The Isokinetic Knee Dynamometer had excellent relative reliability, comparable to the System 4, and both systems displayed acceptable absolute reliability. Proportional biases were observed favoring the System 4 during knee extension of both limbs at 60 °/s and the dominant limb at 180 °/s, and fixed biases favoring the Isokinetic Knee Dynamometer in seven conditions. Relative agreement between systems was good across all test conditions with the majority demonstrating excellent agreement. Conclusions: These data support the Isokinetic Knee Dynamometer as a reliable and valid knee isokinetic testing system. Due to its reduced system complexity, space requirements, and production cost, the Isokinetic Knee Dynamometer may increase the clinical utilization of isokinetic knee assessments. Finally, these data fill an existing isokinetics literature void with the results supporting similar and acceptable measurement properties jointly for dominant and non-dominant limbs and at the higher testing velocities considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.