Abstract
ABSTRACTIn this work, we present a reliability and stability study of doped hydrogenated amorphous silicon (n+-a-Si:H) thin-film silicon MEMS resonators. The n+-a-Si:H structural material was deposited using radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) and processed using surface micromachining at a maximum deposition temperature of 110 ºC. n+-a-Si:H resonant bridges can withstand the industry standard of 1011 cycles at high load with no structural damage. Tests performed up to 3x1011 cycles showed a negligible level of degradation in Q during the entire cycling period which in addition shows the high stability of the resonator. In measurements both in vacuum and in air a resonance frequency shift which is proportional to the number of cycles is established. This shift is between 0.1 and 0.4%/1x1011 cycles depending on the applied VDC. When following the resonance frequency in vacuum during cyclic loading, desorption of air molecules from the resonator surface is responsible for an initial higher resonance frequency shift before the linear dependence is established.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.