Abstract

The aim was to 1) determine intersession and intertrial reliability and 2) assess three sources of variability (intersubject, intersession and intertrial) of lower limb kinematic and electromyographic (EMG) variables during gait in toddlers with typical development (TD) and unilateral cerebral palsy (UCP) (age <3 years, independent walking experience ≤6 months). Gait kinematics and surface EMG were recorded in 30 toddlers (19 TD and 11 UCP), during two, 3D-motion capture sessions. Standard error of measurement (SEM) between trials (gait cycles) of the same session and between sessions was calculated to assess reliability. Standard deviations (SD) between subjects, sessions and trials were calculated to estimate sources of variability. Sixty-four percent of kinematic SEM-values were acceptable (2°-5°). Frontal plane measurements were most reliable (SEM 2°-4.6°). In toddlers with UCP, EMG variables were most reliable for affected side, distal muscles. Intrinsic (intertrial and intersubject) variability was high, reflecting both motor immaturity and the high variability of toddler gait patterns. In toddlers with UCP, variability was amplified by motor impairment and delayed motor development. 3D gait analysis and surface EMG are partially reliable tools to study individual gait patterns in toddlers in clinical practice and research, although some variables must be interpreted with caution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.