Abstract

BackgroundGenerally, attenuation correction is made by incorporating a linear attenuation coefficient, which is based on the attenuation coefficient map (mu-map) created from a computed tomography scan, into the ordered subsets-expectation maximization reconstruction method in non-uniform domains. A non-uniform Chang’s attenuation correction method that uses the mu-map created from a computed tomography image that was made after reconstruction has been performed is currently available. The purpose of this study was to determine the usefulness of the non-uniform Chang’s attenuation correction method in 99mTc-galactosyl human serum albumin diethylenetriamine pentaacetic acid single photon emission computed tomography/computed tomography imaging.MethodsSingle photon emission computed tomography/computed tomography imaging was performed in phantoms with 99mTc water solutions and in a clinical study of 20 donors in living liver tissue transplantation. Attenuation correction was then performed in the reconstructed single photon emission computed tomography images with the non-uniform Chang’s method and ordered subsets-expectation maximization attenuation correction methods with triple energy window scatter correction. Root mean square error values were used for assessment of the image uniformity, and we evaluated the absolute radioactivity in liver parts in the phantoms and those in the donors who had a normal liver function.ResultsThe values of root mean square error on the non-uniform Chang’s attenuation correction images were lower than those on ordered subsets-expectation maximization attenuation correction images for both the phantoms and the 20 donors. The difference between the true and estimated radioactivity in the non-uniform Chang’s attenuation correction method was smaller than that in the ordered subsets-expectation maximization attenuation correction methods in the phantom study.ConclusionsThe non-uniform Chang’s attenuation correction is considered to be superior to the ordered subsets-expectation maximization attenuation correction in the assessment of absolute liver radioactivity and liver image uniformity on 99mTc-galactosyl human serum albumin diethylenetriamine pentaacetic acid single photon emission computed tomography/computed tomography imaging.

Highlights

  • Attenuation correction is made by incorporating a linear attenuation coefficient, which is based on the attenuation coefficient map created from a computed tomography scan, into the ordered subsets-expectation maximization reconstruction method in non-uniform domains

  • As the number of iterations increased, the root mean square error (RMSE) values became higher for both phantoms

  • The estimated radioactivity rose with an increase in the number of iterations with the ordered subsets-expectation maximization (OS-EM) attenuation correction (AC) method (Fig. 2c, d)

Read more

Summary

Introduction

Attenuation correction is made by incorporating a linear attenuation coefficient, which is based on the attenuation coefficient map (mu-map) created from a computed tomography scan, into the ordered subsets-expectation maximization reconstruction method in non-uniform domains. A non-uniform Chang’s attenuation correction method that uses the mu-map created from a computed tomography image that was made after reconstruction has been performed is currently available. The purpose of this study was to determine the usefulness of the non-uniform Chang’s attenuation correction method in 99mTc-galactosyl human serum albumin diethylenetriamine pentaacetic acid single photon emission computed tomography/ computed tomography imaging

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call