Abstract
Over the last few decades, reliability analysis has gained more and more attention as it can be beneficial in lowering the maintenance cost. Time between failures (TBF) is an essential topic in reliability analysis. If the TBF can be accurately predicted, preventive maintenance can be scheduled in advance in order to avoid critical failures. The purpose of this paper is to research the TBF using deep learning techniques. Deep learning, as a tool capable of capturing the highly complex and nonlinearly patterns, can be a useful tool for TBF prediction. The general principle of how to design deep learning model was introduced. By using a sizeable amount of automobile TBF dataset, we conduct an experiential study on TBF prediction by deep learning and several data mining approaches. The empirical results show the merits of deep learning in performance but comes with cost of high computational load.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.