Abstract

PurposeThe purpose of this study is to check the reliability of a multi-pin joint to be a fail-safe joint by considering different geometric and material parameters. The pin joints are made of uni-directional fiberglass that has been impregnated with epoxy composites incorporating 3% nano-clay.Design/methodology/approachThis study incorporates the analysis of multi-pin joints experimentally, numerically and statistically using the Weibull approach. During analyses, geometrical parameters edge to diameter (E:D), longitudinal pitch to diameter (F:D), side edge to diameter (S:D) and transverse pitch to diameter (P:D) were analyzed using the Taguchi method with a higher-the-better L16 orthogonal array.FindingsThis study aims to develop multi-pin laminated joints to attain higher reliability, which have been designated as fail-safe joints for the intended application and which have higher joint strength. The study reveals that to achieve 99% reliability or 1% probability of failure using the Weibull approach, 24.4% load decrement from the experimental result recorded for three-pin joint configuration at E:D = 4, F:D = 5, S:D = 4 and P:D = 5. Similarly, for the four-pin configuration at E:D = 4, F:D = 4, S:D = 4 and P:D = 5, 23.07% of load decrement observed from the experimental result implies that the expected load with a 99% reliability offers a safe load.Originality/valueA reliability analysis on multi-pin joints was not conducted in structural application. Composite materials are used because of high reliability and high strength-to-weight ratio. So, in the present work, reliability of the multi-pin joint is analyzed using Weibull distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.