Abstract

This paper discusses the reliability model of a window flow control scheme using High-performance and Flexible Protocol (HpFP) with Explicit Congestion Notification (ECN) considering packet loss. HpFP is an important techniques as congestion control scheme in a radio environment and video stream communication. HpFP has the character that throughput is adjusted by changing a packet transmission interval. We have already discussed some reliability models of a window flow control scheme based on a packet transmission interval. In these models, if some packets has failed at a first-time transmission, the packet transmission interval is prolonged. On the other hand, the server checks the state of network congestion by ECN bit. That is, if ECN bit has been set during connection, a packet transmission interval is also prolonged. We consider an extended stochastic model of a window flow control scheme based on a packet transmission interval with ECN considering packet loss. That is, the server checks ECN bit during connection and if the server detects the network congestion, the server executes congestion control that a packet transmission interval is prolonged. Thereafter, if a constant number of the retransmission has failed, or a constant number of packets has failed, the server checks it again. We derive the mean time until packet transmissions succeed, and discuss analytically a window size which maximizes the amount of packets per unit of mean transmission time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call