Abstract

The Weibull distribution is the most widely used model for the reliability evaluation of wind turbine subassemblies. Considering the important role of the location parameter in the three-parameter (3-P) Weibull model and its rare application in wind turbines, this study conducted a reliability analysis of wind turbine subassemblies based on field data that obeyed the 3-P Weibull distribution model via maximum likelihood estimation (MLE). An improved ergodic artificial bee colony algorithm (ErgoABC) was proposed by introducing the chaos search theory, global best solution, and Lévy flights strategy into the classical artificial bee colony (ABC) algorithm to determine the maximum likelihood estimates of the Weibull distribution parameters. This was validated against simulation calculations and proved to be efficient for high-dimensional function optimization and parameter estimation of the 3-P Weibull distribution. Finally, reliability analyses of the wind turbine subassemblies based on different types of field failure data were conducted using ErgoABC. The results show that the 3-P Weibull model can reasonably evaluate the lifetime distribution of critical wind turbine subassemblies, such as generator slip rings and main shafts, on which the location parameter has a significant effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call